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Abstraer We study a spin-: Heisenberg model H = JIX:=~SIS~ + JzXL2S;Sj+i; 
51, Jz 2 0 (Heisenberg star) which may be considered either as an essential m c t m  element of a 
lattice with fmsmation or, alternatively. as an antiferromagnetic linear chain with a perturbation. 
We discuss general relations for the energy eigenvalues, the eigenstates as well as the spin 
correlation of the system in dependence on h f J ~ .  The wrrelation function (SIS;) scales with 
I/Z, where Z = N - 1 is the number of nearest neighbours i of the CenW spin 1. In the 
mm-field limit (Z '--f CO) (SI$) goes to -0.25 for smaU S ~ / J I ,  but vanishes fm strong 
fruushation JzIJ i .  Adding exact numerical results for N = 5.7.. . . ,23 we discuss the ground- 
state phase diagram in panicular, the ground-state spin wrrelafioos versus Jz f J I .  Analysing 

 the spin wrrelalion of frustrated and non-frusuated stars we suggest an upper bound -0.25 
for the ground-stale wrrelator (SjSj)o of two antifermmagnetically interacting spins i and j 
in a non-frustraled Heisenberg spin-4 antiferromagnet. We "gue that any measured nearest- 
neighbour spin correlation (S;Sj)o larger than this bound indicates of frusuation in quantum 
spin Heisenberg antifenomagnets. 

1. Introduction 

The ground state of quantum spin systems has attracted considerable interest over a 
long period. In connection with a possible magnetic mechanism for high-temperature 
superconductivity, in particular the low-dimensional quantum antiferromagnets have been 
widely discussed in recent times. However, the ground-state properties of low-dimensional 
quantum spin systems is a subject of considerable importance in its own right, in view of our 
poor knowledge of interacting many-body systems. One example is the spin-; Heisenberg 
antiferromagnet on the square lattice with nearest-neighbour interaction JI and frushating 
next-nearest-neighbour interaction Jz. Though ow knowledge of this model is more or less 
speculative, a rich physics i s  suggested including the possibility of a quantum spin liquid 
phase with exotic non-collinear ordering 11-31, 

In this context solvable models can be quite useful in order to understand general aspects 
of magnetic ordering in quantum systems. For instance for quantum spin chains there are 
two known classes of solvable models: (i) models solvable by the Bethe ansatz [4-121 
and (ii) models whose exact ground state can be expressed in terms of valence bonds 
113-151. For the latter, which can be realized also in higher dimensions [16], a special 
arrangement and magnitude of frustrating bonds play an important role. Another class of 
solvable models is connected with long-range interactions. In one dimension Haldane and 
Shastry [17,18] found the spectrum and thermodynamics of the spin-4 Heisenberg chain 
with inverse-square exchange. ?hirty years ago Lieb and Mattis 1191 studied a model 
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with long-range interaction of constant magnitude which has recently been used to discuss 
spontaneous symmetry breaking in spin systems [20-221. This model can be also formulated 
with frustration 131. 
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In this paper we want to discuss a spin-; Heisenberg Hamiltonian 

which we will refer to as the frusbated Heisenberg star in analogy with the Hubbard star 
discussed in [231. We choose periodical boundary conditions, i.e. the spins Sz and SN+I 
are identical. Both interactions J1 and Jz are antiferromagnetic, i.e. competing (frustrating). 
This model can be considered from different points of view: it represents an essential 
structure element of a lattice (namely a central site with 2 = NR = N - 1 nearest neighbours 
which can be unconnected (Jz  = 0) or connected (Jz # 0)). For large 2 it approaches the 
molecular field situation and in this sense it resembles the Lieb-Mattis model. On the other 
hand in the limit of JZ >> J1 the model describes the antiferromagnetic h e a r  chain with 
a small frustration. To avoid additional frustration via boundary conditions we choose for 
the numbet of sites in the ring, NR = N - 1, even numbers only. 

2. General properties of the Heisenberg star 

2.1. Defrnitions 

We define the following quantities: 
(i) the total spin of the system 

(ii) the total spin of the outer ring 

N 
sR=csi=s-S,  

i=2 
(3) 

(iii) the Hamiltonian of the outer ring (Heisenberg model of the antiferromagnetic linear 
chain with periodical boundary conditions) 

With these definitions the Hamiltonian (1) reads 

H = J~SISR + JzHR.  (5) 
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2.2. Commutation rules 

The Hamiltonian fulfills the following commutation rules: 

[H. SZ]- = 0 [a s,]- = 0 [SZ, s,]- = 0 

[HR, Si ] -  = 0 [ H R ,  S R . r ] -  = 0 [Si, S R , z ] -  = 0 

which are standard for any Heisenberg Hamiltonian H or HR, and 

which are specific for model (1). (Notice that H does not commute with the z-component 
O f  S R ) .  

2.3. Eigenvalues 

The commutation rules allow us to classify the eigenstates by the quantum numbers 
E,  s,  m, r ,  which belong to H, 9, S,, Si, respectively. For s and r we have 

s = r + c $ .  (8) 

E = JZER + fJ1r for r = s - 1 2  r = 0 , 1 , 2  ,..., (N-1)/2 (9) 

Using SI SR = $ (S2 - - S:) we find for the energy 

(10) E = JZER -~fJl(r + 1) 

For the energy of the ring ER we have Lieb and Mattis’ 1191 general relations for the lowest 
eigenvalue in every subspace with fixed $ = r(r  + 1) 

I 
~ for r = s + 1 r = 1.2,. .., (N - 1)/2. 

ER(?-) c ER(r + 1). (11) 

Hence, for the ordering of the energy levels and, in particular, for the realization of the 
ground state we have a competition between the JI term and the J2 term in the energy. 
For dominating J I  we have a ground state with the maximum r = ( N  - 1)/2 and with 
s = r - 1- 2 .  1 ncreasing Jz, the term J ~ E R  in the energy becomes more important and states 
with lower quantum numbers r have lower energies. Finally, for dominating 52,  the state 
with r = 0 and s = is the ground state. Varying the ratio 52/51 between the two limits of 
zero and infinity, the system undergoes a series of ( N  - 1)/2 transitions between different 
ground states. 

2.4. Structure of fhe eigenfunctions 

The basic structure of the eigenstates of(1) reads as follows: 

where I f )  and I$) are the eigenfunctions of the z-component of the central spin  SI,^ and 
the \QER,r,m*4) are the eigenfunctions of HR, S i ,  S R , ~  with the corresponding eigenvalues 
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ER, r(r + l), m zk 4. Of course, the wavefunction I @ E , ~ , ~ , ~ )  has to obey the equations 
Hl@E,s ,m. r )  = E I @ E . ~ . ~ . ~ )  and ( @ E , ~ . ~ . # ' E , ~ , ~ , , )  = 1. The first one yields a quadratic 
equation for the energy E with the two solutions given in (9). (10). With these expressions 
for E we obtain for a and b 
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- .  - 
. b = \ I r - m C I  1 

2r 4- 1 2r + 1 
for r = s  - 4 and E from (9) and 

b =  
2r + 1 2r -4 1 

for r = s + 4 and E from (10). It is remarkable that the coefficients a and b, and therefore 
the wavefunction I ~ E . ~ . ~ . ~ )  too, do not depend on 51 and Jz. On the other hand, as discussed 
above, the energy of a certain state depends on JI  and Jz. i.e. the thermodynamic properties 
determined by the spectnun vary with Jz/J , .  

2.5. Spin correlations 

The spin correlation of the central spin with a spin of the ring determines the term 
proportional to 51 in the energy E. From the expressions (9), (10) we get 

-(r + 1) for r=sfi. 1 
2(N - 1) (@E.s .m.r l~ l~~ l@E.s .m.r )  = 

For fixed r the correlation function decreases with l/(N - 1). We can discuss the correlation 
in the two limits of the model JZ f J I  << 1 and JZ f 51 >> 1. In the first one we have a ground 
state with r close to its maximum valuer,, = ( N  - 1)/2, i.e. r = rm- p ( p  = 0,1, . . .) 
and 

i.e. in a weakly frustrated system the spin correlation of a central spin with its neighbours is 
proportional to the inverse of the number of nearest neighbours Z = N - 1 and reaches the 
molecular field value -0.25 for Z --f w. In the second case of strong frustration we have 
a ground state with small r close to its minimum value rnuh = 0. For r = rdo we have 
(QE,~,~.~ISIS~ I Q E . ~ , ~ . , )  = 0, i.e. the strong frustration suppresses the antiferromagnetic 
correlation completely. If the frustrating Jz is not strong enough to realize r = 0 but any 
small value r < Z, we have a spin correlation going to zero with 1/Z. 

Let us compare the spin correlation of the unfrustrated Heisenberg star for Z = 4, Z = 
6, Z = 8 with the values given in the literature for the square lattice, the simple cubic lattice 
and the body-centred cubic lattice. We find for the square lattice (@olS~Sil@o) M -0.335, 
forthesclattice (@olSISil@~) = -0.30 [25] andfortheBCClattice (@olS~S~l@po) a -0.29 
[25]. These values are close to the values -0.375 (Z = 4), -0.333 (Z = 6) and 
-0.3125 (Z = 8) obtained for the unfrustrated star (17). On the other hand, for the hiangular 
lattice the nearest-neighbour correlation function is (@olSlSi I@o) M -0.18 [26] indicating 
the effect of frustration. From (16) we find for the corresponding star (Z = N - 1 = 6) a 
comparable value -0.16g for the quantum number r = 1. We argue, that any ground-state 
correlation (@oIS,Sj I@o) z -0.25 of two antiferromagnetically interacting spins S; and 
Sj indicates frustration. 
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3. The limit of small &/.TI 

In the case of < 1 the interaction of the central spin with its Z = N - 1 neighbours 
is weakly frustrated and the low-lying states have a large quantum number r close to 
its maximum value ( N  - 1)/2. For Jz = 0 the ground-state wavefunction belongs to 
r = (N - 1)/2 and reads 

Of course, this state is degenerate with 

I ~ E . s = ( N - Z ) / Z , m = - s + = , ~ ~ ( N - I ) / Z )  - I~E,s=(N-2)/2.m=-s.r=(N-I) /2)  

(n = 1, . . . , N - 2). 

The energy of these states is 

Increasing J2. the state with the next quantum number r = (N - 3 ) / 2  becomes the ground 
state at a critical ratio Jz /J l .  We can give the explicit expression for this wavefunction too: 

N 
- (-l)il4J, ... . r i . . . r j  ... J)] 

i. j=2 
li-jl even 

0 spin up 0 spin down. 

The same Kramers degeneracy as for the state (18) holds, of course, for the state (20). The 
energy of (7.0) is 
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The explicit knowledge of the energies of the states with r = r,, and r = rmar - 1,  
(19), (21) allows us to find an exact value for the critical ratio 52/51 for the transition 
r,, --f r,, - 1 .  We find J ~ / J I  = $, i.e. independent of the system size N the state 
with the strongest antiferromagnetic correlation between the central spin and its neighbours 
remains the ground state up to a relatively strong frustration. 

J Richter and A Voigt 

For completeness we give the spin correlations. In the state (18)  we have 

i , j = 2 , 3  ,..., N 
1 

, , (SiSj, = 
1 1 
4 2(N- 1) 

(S,Sj) = -- - 

and in the state (20) 

li - j l  odd) 
1 1 7 
4 I ’ - 4  4 ( N - 2 )  

(&S.) = -_ , . , ,. (S.S.) -_ -  

(SjSj) = a  li - jl even i, j = 2 , 3  ,..., N .  

4. The Limit of large Jz/J1 

In this limit the interaction J2 within the ring dominates the interaction J1 of the central 
spin with its neighbours and the system can be considered as a one-dimensional ring with a 
small perturbation (frustration). If J z / &  exceeds a critical value, the ground state belongs 
to the quantum numbers r = 0 and s = 4. Using (12) and (13) the wavefunction reads 

(24) 

which is degenerate to IQE,r=+,m=-+O). The wavefunction of the ring ~ @ ~ ~ , ~ o , m - ~ = o  ) is 
then the Bethe ground state of the onedimensional Heisenberg antiferromagnet [4]. In the 
limit NR = ( N  - 1) + 00 the ring energy ER (which according to (9) is equal to the total 
energy of the system) is given by Hulthen’s result [5] 

I%.s=;.m=i.r=OJ = l ~ ) l % ~ , r = o . m - ~ = o  R 

E~(NR + 00) = N R ( $  - 1n2).  (25) 

For finite systems the ~ / N R  corrections are given by 127,281 

The energy of the first triplet excitation for the ring reads 127,281 

Hence, we find the critical ratio 

where Bethe’s singlet ground state and the first triplet excitation of the ring become 
degenerate. Clearly, in the thermodynamic limit the gap between the singlet (r  = 0) ground 
state and the triplet (r = 1) excitation closes and an infinitesimally small J I  - NC’J2 is 
sufficient to destroy the singlet ground state. of the ring. 
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5 7 9 11 13 15 17 19 21 23 h, 

Figure 1. Grow state transitions 
between states wi different qm- 
tum numbers r versus h l J 1  for sys- 
tems of seven! size N. 

Figure 2. Spin-spin “lation - r=O ~ Q ~ , ~ , ~ , ~ I ~ i ~ ~ + j I Q ~ , ~ , ~ . ~ ~  of two 
spins in the outer ring for states 
with different quanm numbers r .  

0 1 2 3 4 5 . 6  7 8 9 1 0 1 1  The numerical data are presented for 

r=5 

Rij/a N = 23. 

5. Numerical results 

We have calculated the ground-state phase diagram for arbitrary 52/51 for finite systems 
up to N = 23 sites by the Lanczos technique. The result is shown in figure 1. According 
to the general discussion in section 2 the ground state is a state with maximum quantum 
number r and strongest antiferromagnetic correlation (&Si) for Jz/J1 < cudl. We find 
a,dt = a as an exact and universal value independent of the size of the system. If 52/51 
exceeds cucrit it follows a series of transitions to giound states with decreasing r and weaker 
correlations (SI&). With decreasing r the correlation (SjSj) (i # j = 2, N )  (which is 
shown in figure 2 for N = 23) starts with a pure ferromagnetic correlation for r = r,, and 
then becomes more and more spatially modulated towards an antifemmagnetic correlation 
with a power-law decay for r = 0. The ground-state transitions between various quantum 
numbers r immediately following the first transition rmaX -+ (r,, - 1) are very close to each 
other and build a quasicontinuum for stars with large N (see figure 3, where the numerical 
results are extrapolated to large N ) .  However, for r going to its minimum value, r = 0, 
the transitions are well separated from each other (the leading term for the critical 52/51 is 
proportional to NR; see section 4). This is illustrated in figure 4, where the critical inverse 
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0.5 2 

Figure 3. Critical ratio JztJl 
for wasitions between sWes with 
different quanhm numbers r close to 
r,. = (N - 1)/2 versus 1/N. The 
numerical data for N = 5.7, . . . ,23 
are exhpdawzi to hfiuite N. 

~eeeo  r=O + , r=l eqn.(28) 

r=I + r= 
O L V s  r=2 .+ r= 

Figure 4. Inverse critical ratio J l / h  
for transitions between states with 
different quantum numbers r close 
to .',,,in = 0 versus 1/Nn (NR = 
N - 1). The numerical data for 
NR = 4,6, . . . ,22 are exmpolsred 
to infinite NR. 

5 

ratio J l / J z  and its extrapolation to large NR is shown for several transitions. 
We illustrate the above general discussion of transitions for N e 23 in figure 5 by 

presenting the correlation of the central spin with a neighbouring spin (&Si), the correlation 
of nearest neighbours in the ring (SiSi+l) and the square of sublattice magnetization of the 
ring 

with dependence on Jz/J,. For finite NR the latter one is a measure of the overall 
antiferromagnetic correlation and goes to zero for NR + W. Clearly, we see the 
quasicontinuous series of transitions if J ~ / J I  slightly exceeds a;dt and the well separated 



Heisenberg star withfnrsration 1147 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

- 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
(4 JJJI 

0.15 1 r 
0.10 

0.05 

0.03 

Figure 5. (a) Numerical data for 
the ground-staLe spin-spin correla- 
tion (S,S.)o belweeo ule cenw spin 
1 and a neighbouring spin i as well as 
(SjSi+l)o between two neighbour- 
ing spins in the ring versus J d J 1  
for N = 23. (b) Numerical data for 
tk square of sublattice magnetiza- 
tion M,' (see (29)) of the ring versus 
J ~ J J I  for N =23. 

transitions for larger Jz/ J1. The change from strong antiferromagnetic correlations of the 
central spin with its neighbours (accompanied by ferromagnetic correlations in the ring) 
to a well pronounced antiferromagnetic correlation in the ring (accompanied by a drastic 
weakening of the correlation of the central spin) takes place in a small region above the 
first transition Jz/J1 = %it. 

Finally, let us consider in figure 6 the correlation of the central spin with a neighbouring 
spin (SISi) versus the frustration parameter Jz / J ,  for stars with Z = NK = N - 1 = 
4,6,8, 12 which correspond to some standard two- and three-dimensional lattices, e.g. for 
Z = 6 and 52 5 J I  the star corresponds to an elementary cluster of the triangular lattice 
and, as dicussed already in section 2.5, the correlation fits quit well to the infinite triangular 
lattice. The critical ratio J*/J,, where the correlation of the central spin with its neighbours 
is completely suppressed by frustration, is of the order of unity (Jz/Jl  = 1.0 for Z = 4, 
JzfJ1=1.46forZ=6, J~/J1=1.91 f o r Z = 8 ,  J~/J1=2,81forZ=12). 
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- z=4 - z=6 - z=a - z=12 Figure 6. Numerid data for 
the ground-state spin-spin correla- 
tion (SIS;)~ Ween the central 
spin 1 and a neighbouring spin i 
versus ~ / J I  for clusters with dif- 
ferent numbers of neighbours 2 
(2 = N - 1). J>/J~ 

6. Summary 

In this paper we discuss the spin-; Heisenberg model for a cluster of a cenkal spin interacting 
with 2 nearest-neighhour spins via antiferromagnetic exchange coupling J1 (Heisenberg 
star). Additionally, every neighbouring spin may interact antiferromagnetically via JZ 
with two other neighbours, forming an outer antiferromagnetic ring around the central spin 
(frustrated Heisenberg star). In the two limits of the model, J1 >> JZ and 31 << Jz. the 
cluster can be considered as an essential structure element of a lattice with frustration or as 
an antiferromagnetic linear chain with aperturbation. General considerations for the energy, 
the eigenfunctions and the spin-spin correlation and their dependence on 01 = J z / J I  give 
hints for the ground-state phase diagram. For J z / J I  < cikt the ground state of the system 
is the state with strongest antiferromagnetic correlation 

1 1 1  (&Si) = -- - -- 
4 2 2  

If Jz/J1 exceeds f f C ~ t r  it follows a series of transitions to states with successively weaker 
correlations (SlSi) ending with (SlSi) = 0 for dominating 52. For cfkl we find exactly 4, independent of the size of the system. For larger N this weakening of antiferromagnetic 
correlation of the central spin takes place very rapidly when changing Jz / J I  in a small 
region above the first msition. 

the correlator 
(SISi) = -0.25 which can be considered as an upper limit for the ground-state 
correlation (SiSj)0 of antiferromagnetically interacting spins i and j in a spin-4 Heisenberg 
antiferromagnet without frustration. Any ground-state spin correlation (SiSj)o larger than 
-0.25 is an effect of frustration. If the frustration is strong enough the correlation (SiSj)o 
goes to zero with 1/Z in the mean-field limit Z + 63. 

The extrapolation 2 + CO (mean-field limit) yields for Jz/J1 < 
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